Advanced Data Types

Follow along in iPython notebook:
DataFiles_and_Notebooks/02_AdvancedDataStructures/02_AdvancedDataStructures.ipynb

There are 4 main types of
collections of data:

("Sequence objects")

® List:a mutable array of data
® Tuples: ordered, immutable list

® Sets: unordered collection of unique
elements

e Dictionary: keyword/value lookup

The value in each element can be whatever (type) you want

List

denoted with a brackets

>>> v = [1,2,3] ; print len(v), type(Vv)
3,<type "list">

>>> v[0:2]

[1,2]

>>> v = ["eggs","spam",-1, ("monty", "python"),[-1.2,-3.5]]

>>> len(v)

5
>>> v[0] ="green egg"
>>> v[1l] += ",love it."

['green egg', 'spam,love it.', -1, ('monty', 'python'),
>>> v[-1]

[-1.2, -3.5]

>>> v[-1][1] = None ; print v

['green eqgg', 'spam,love it.', -1, ('monty', 'python'),
>>> v = v[2:] ; print v

[-1, ('monty', 'python'), [-1.2, None]]

>>> # let's make a proto-array out of nested lists
>>>vv = [[1,2], [3,4]]

>>> determinant = vv[0][0]*vv[1][1] - vv[O][1l]*vv[1l][O]

lists are changeable

[-1.2, -3.5]]

[-1.2, None]]

List

lists can be extended & appended

>>> v = [1,2,3]
>>> v.append(4)
>>> print v
[1121314]

Lists can be considered objects.
Obijects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make
children), and they have characteristics (like height, weight).

"Knowing how to do stuff' with itself is called a method.
In this case "append” is a method which, when invoked, is
an action that changes the characteristics (the data vector of
the list itself).

List

lists can be extended, appended, and popped

>>> v.append([-5])

>>> print v

[11213141[_5]]

>>> v = v[:4]

>>> w = ['elderberries', 'eggs']
>>> v o+ w

[1,2,3,4, 'elderberries’', 'eggs’]
>>> v.extend(w) ; print v
[1,2,3,4, 'elderberries’', 'eggs’]
>>> v.pop()

'eggs'

>>> print v

[1,2,3,4, 'elderberries']

>>> v.pop(0) ; print v ## pop the first element
1

[2, 3, 4, 'elderberries']

. append():adds a new element
.extend ():concatenates a list/element
. pop ():remove an element

List

lists can be searched, sorted, & counted

>> v = [1,3, 2, 3, 4, 'elderberries']

>>> v.sort() ; print v

[1, 2, 3, 3, 4, 'elderberries']

>>> v.sort(reverse=True) ; print v

['elderberries', 4, 3, 3, 2, 1]

>>> v.index(4) ## lookup the index of the entry 4

1

>>> v.index(3) # get the first occurrence of the number 3
2

>>> v.count(3)

2

>>> v.insert(0,"it's full of stars") ; print v

["it's full of stars", 'elderberries', 4, 3, 3, 2, 1]
>>> v.remove(l) ; print v

["it's full of stars", 'elderberries', 4, 3, 3, 2]

reverse is a keyword of the . sort () method

ipython is your new best friend
quick look at what's available & what it does

special methods of lists,

we generally don’t use
In [205]: V.

v. add v. getattribute = v. le V. reversed v.index
v. class v. getitem v. len v. rmul v.insert
v. contains v. getslice v.e 1t v. setattr V.pop

v._ delattr v. gt v. mul v. setitem V.remove
v. delitem v. hash V. ne v. setslice vV.reverse
v. delslice v. iadd V. new_ v. str v.sort

v. doc__ v. imul v. reduce v.append

v. eq v. init v. reduce ex v.count

v. ge v. iter V. repr v.extend

In [205]: v.re tab

V.remove vV.reverse

In [205]: v.remove?

Type: builtin function or method

Base Class: <type 'builtin function or method'>

String Form: <built-in method remove of list object at 0x10169b710>
Namespace: Interactive

Docstring:

L.remove(value) -- remove first occurrence of value

List

iteration

>>> a = ['cat', 'window', 'defenestrate']
>>> for x in a:
print x, len(x)

cat 3

window 6

defenestrate 12

>>>

>>> for i,x in enumerate(a):
print i, x, len(x)

0 cat 3

1 window 6

2 defenestrate 12

>>> for x in a:
print x,

cat window defenestrate

for variable name in iterable:
do something with variable name

List
range ()

>>> x = range(4) ; print x
[OI 1! 2! 3]
>>> total = 0
>>> for val in range(4):
total += val
print "By adding " + str(val) + " the total is now " + str(total)
By adding 0 the total is now 0
By adding 1 the total is now 1
By adding 2 the total is now 3
By adding 3 the total is now 6

range([start,] stop[, step]) — list of integers

>>> total = 0
>>> for val in range(1,10,2):
total += val
print "By adding " + str(val) + " the total is now " + str(total)

By adding 1 the total is now 1
By adding 3 the total is now 4
By adding 5 the total is now 9
By adding 7 the total is now 16
By adding 9 the total is now 25

List

range()

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for 1 in range(len(a)):
print i, a[i]

Mary
had

a
little
lamb

> W NPk O

Tuple

denoted with parentheses

>>> t = (12,-1)

>>> print type(t)

<type "tuple">

>>> isinstance(t,tuple)

True

>>> Jen(t)

2

>>> t = (12,"monty",True,-1.23e6)
>>> t[1]

"'monty’

>>> t[-1]

-1.23e6

>>> t[-2:] # get the last two elements, return as a tuple
(True, -1230000.0)

>>> x = (True) ; type(x)
<type "bool">
>>> x = (True,) ; type(x)

<type "tuple">
>>> type(()), len(())
(<type "tuple">, 0)

single-element tuples look like (element,)

Tuple

cannot change a tuple
but you can create new one with concatenation

>>> t[2] = False
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t[0:2], False, t[3:]
((12, 'monty'), True, (-1230000.0,))
>>> ## not what we wanted... need to concatenate
>>> t[0:2] + False + t[3:]
TypeError: can only concatenate tuple (not "bool") to tuple
>>> y = t[0:2] + (False,) + t[3:] ; print y
(12, 'monty', False, -1230000.0)
>>> t*2
(12, 'monty', True, -1230000.0, 12, 'monty', True, -1230000.0)

Casting back and forth

You can go back and forth between tuples and lists

>>> a = [1I213]("b",1)]
>>> b = tuple(a) ; print b
(1, 2, 3, ('b', 1))

>>> print list(b)

[1, 2, 3, ('b', 1)]

>>> set(a)

set([1l, 2, 3, ('b', 1)])
>>> list(set("spam"))

[,a|, |p|, |s|, |m|]

casting only affects top-level structure, not the elements

Why use tuples when you have lists?

Sometimes, immutability is what you need

>>> continents = (“North America”, “South America”, “Europe”, *“Asia”,
“Australia”, “Antarctica”) # Something that you probably don’t want changed
>>> tasks = [“learn Python”,”eat dinner”,”climb Mt. Everest”] # Something you

might want to add and subtract from

since any comma-ordered sequence without parenthesis
is also a tuple, so you’ll see them in other contexts

>>> first name, last name = “Jack”, “Hewitt” # This is a tuple assignment
>>> print “My name is”, first name, last name # This statement prints a tuple

My name is Jack Hewitt
>>> a, b, ¢ = some function(x,y) # This function returns a tuple (more later..)

Sets

denoted with a curly braces

>>> {1,2,3,"bingo"}

set(['bingo', 1, 2, 31])

>>> type({1,2,3,"bingo"})
<type 'set'>

>>> type({})

<type 'dict'>

>>> type(set())

<type 'set'>

>>> set("spamIam")

set(['a’, 'p', 's', 'm', 'I'])

sets have unique elements. They can be
compared, differenced, unionized, etc.

>>> a
set(['
set(['
>>> ¢
>>> ¢
True
>>> "p" in a
True

>>> "ps" in a
False

set("sp"); b = set("am"); print a ; print b
'y 's'])
om'])
set(["a","m"])
b

1 oo |l

>>> q = set("spamIam")
>>> a.issubset(q)

True

>>> a | b

set(['a’, 'p', 's', 'm'])
>>> q - (a | b)
set(['I"'])

>>> q & (a | b)
set(['a’, 'p', 's', 'm'])

Like lists, we can use as (unordered) buckets
.pop() gives us a random element

>>> g.remove("a")

>>> q.pop()

lpl

>>> qg.pop()

ISI

>>> q.pop()

Iml

>>> q.pop()

III

>>> qg.pop()

Traceback (most recent call last):

File "<ipython-input-39-16da542f89c5>", line 1, in <module>

g.pop()

KeyError: 'pop from an empty set'

Dictionaries

denoted with a curly braces and colons

>>> d = {"favorite cat": None, "favorite spam": "all"}

these are key: value, key: value, ...

>>> print d["favorite cat"]

None

>>> d[0] ## this is not a list and you dont have a keyword = 0
KeyError: 0

>>> e = {"favorite cat": None, "favorite spam": "all", 1l: 'loneliest number'}
>>> e[l] is 'loneliest number'

True

>>> e

{1l: 'loneliest number', 'favorite cat': None, 'favorite spam': 'all'}

dictionaries are UNORDERED*. You cannot assume
that one key comes before or after another

* you can use a special type of ordered dict if you really need it:
http://docs.python.org/whatsnew/2.7.html#pep-372-adding-an-ordered-dictionary-to-collections

http://docs.python.org/whatsnew/2.7.html#pep-372-adding-an-ordered-dictionary-to-collections

4 ways to make a Dictionary

>>> # number l1l...you've seen this

>>> d = {"favorite cat": None, "favorite spam": "all"}
>>> # number 2

>>> d = dict(one = 1, two=2,cat = 'dog') ; print d
{'cat': 'dog', 'one': 1, 'two': 2}

>>> # number 3 ... just start filling in items/keys
>>> d = {} # empty dictionary

>>> d['cat'] = 'dog'

>>> d['one'] =1

>>> d['two'] = 2

>>> d

{'cat': 'dog', 'one': 1, 'two': 2}

>>> # number 4... start with a list of tuples

>>> mylist = [("cat","dog"), ("one",1l),("two",2)]

>>> print dict(mylist)
{'cat': 'dog', 'one': 1, 'two': 2}

Dictionaries

they can be complicated (in a good way)

>>> d = {"favorite cat": None, "favorite spam": "all"}

>>> d = {'favorites': {'cat': None, 'spam': 'all'}, \
'least favorite': {'cat': 'all', 'spam': None}}

>>> print d['least favorite']['cat']

all

the backslash (\) allows you to across break lines. Not technically
needed when defining a dictionary or list

>>> phone numbers = {'family': [('mom',6 '642-2322"'),('dad','534-2311")],\
"friends': [('Sylvia',6 '652-2212"')]}
>>> for group type in ['friends',6 'family']:
print "Group " + group type + ":"
for info in phone numbers[group type]:
print " ",info[0], info[l]
Group friends:
Syvlia 652-2212
Group family:
mom 642-2322
dad 534-2311

Dictionaries

>>> phone numbers = {'family': [('mom',6 '642-2322"'),('dad','534-2311")],\
‘friends': [('Billy','652-2212"')]}

>>> phone numbers.keys() # this will return a list, but you dont know in what order!

['friends', 'family']

>> phone numbers.values()

[[('mom',"'642-2322"'),('dad', '534-2311")], [('Billy','652-2212")]]

keys() and .values(): methods on dictionaries

>>> for group type in phone numbers.keys():
print "Group " + group type +
for info in phone numbers[group type]:

print " ",info[0], info[l]

we cannot ensure ordering here of the groups

>>> groups = phone numbers.keys()
>>> groups.sort()
for group type in groups:
print "Group " + group type +
for info in phone numbers[group type]:
print " ",info[0], info[l]

iteritems() is a handy method,
returning key,value pairs with each iteration

>>> for group type, vals in phone_numbers.iteritems():
print "Group " + group type + ":"
for info in vals:
print " ",info[0], info[l]

getting values

>>> phone numbers['co-workers']

KeyError: 'co-workers'

>>> phone numbers.has key('co-workers')

False

>>> print phone numbers.get('co-workers') # no error!
None

>>> phone numbers.get('friends') == phone numbers|['friends']

setting values

you can edit the values of keys and also .pop() & del to remove certain keys

>>> phone numbers['friends'].append(("Jeremy","232-1121"))# add to the friends list
>>> print phone numbers
{'family': [('mom',6 '642-2322"),('dad', '534-2311")],
'"friends': [('Sylvia','652-2212"), ("Jeremy","232-1121")]1}
>>> ## Sylvia'’s number changed
>>> phone numbers|['friends'][0][1] = "532-1521"
TypeError: 'tuple' object does not support item assignment
>>> phone numbers|'friends'][0] = ("Sylvia","532-1521")
>>> ## I lost all my friends preparing for this Python class
>>> phone numbers|['friends'] = [] # sets this to an empty list
>>> ## remove the friends key altogether
>>> print phone numbers.pop('friends')
[1]
>>> print phone numbers
{'family': [('mom',6 '642-2322"),('dad', '534-2311"')1}
>>> del phone numbers['family']

. update () method is very handy, like . append () for lists

>>> phone numbers.update({"friends": [("Billy's Brother, Bob", "532-1521")1]})
>>> print phone numbers
{'family': [('mom',6 '642-2322"),('dad','534-2311")],

"friends": [(“Sylvia's Friend, Dave", "532-1521")]}

List Comprehension

You can create lists "on the fly" by asking simple
questions of other iterate-able data structures

example: | want a list of all numbers from 0 - 100 whose lowest two bits are both one
(e.g., 3,7,...) butis not divisible by I |

>>> mylist = [] Old Way

>>> for num in range(101l):
if (num & 2) and (num & 1) and (num % 11 != 0.0):
ces mylist.append(num)
>>> print mylist
(3, 7, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95]

New Way

>>> mylist=[num for num in range(1l0l) if (num & 2) and (num & 1) and (num % 11 != 0.0)]
>>> print mylist
(3, 7, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95]

List Comprehension

example: | want a list of all mesons whose masses are between 100 and 1000 MeV

>>> particles = [{"name":"nm+" ,"mass": 139.57018}, {"name":"m0" ,"mass": 134.9766},
{"name":"n5" ,"mass": 47.853}, {"name":"n’(958)","mass": 957.78},
{"name":"nc(1s)", "mass": 2980.5}, {"name": "nNb(1S)","mass": 9388.9},
{"name":"K+", "mass": 493.677}, {"name":"KO0" ,"mass": 497.614},
{"name":"K0S" ,"mass": 497.614}, {"name":"KOL" ,"mass": 497.614},
{"name":"D+" ,"mass": 1869.62}, {"name":"D0" ,"mass": 1864.84},
{"name":"D+s" ,"mass": 1968.49}, {"name":"B+" ,"mass": 5279.15},
{"name":"B0" ,"mass": 5279.5}, {"name":"BOs" ,"mass": 5366.3},
{"name":"B+c" ,"mass": 6277}]

>>> my mesons = [(X['name'],x['mass']) for \

X in particles if x['mass'] <= 1000.0 and x['mass'] >= 100.0]
>>> # get the average
>>> tot = 0.0 ; for x in my mesons: tot+= x[1]
>>> print "The average meson mass in this range is + str(tot/len(my mesons)) + " MevV/c"2."
The average meson mass in this range is 459.835111429 MeV/c"2.
>>> my mesons[0][0]
"\xcf\x80+"
>>> print my mesons[0][0]
ity

data source: http://en.wikipedia.org/wiki/List of mesons

http://en.wikipedia.org/wiki/List_of_mesons

Breakout Session Work
consider the foIIowmg data (fle meetlngs py):

organizers = { "Extragalactic al \ry
3amma - 4)Y Hu"ut A.":"”: 'Iumy %4:uni””,
»'4 ophysics Co ulum : J emy E ar
Ix uh argaret Pan",
Py € Gre “Terrli Brand
& Jium ies": “"Ben Kobl
fou i Venters" }

¥ 1ncLuges the ting, r(decimal éendg time
neetings = [(“Gamma-Ray E256", "Tue", 3.0),
(*Extragalact B34 S3n“," 14.0,15.9),
("P on Use W120A/B", "Tue", 5),
(*Astrophysic 4 E215","Tue 17.0),
("N appy Hou Tue“,17.9,18.0)
(“Exoplanet Club®, 15%,%Tue",11.5,12.5),
("IS&T Colloguium Series”,"B3 Auditorium","Tue",11.0,12.0)]

|. print out a schedule organized by meeting:

Meeting Room No. Day Time Organizer
IS&T Colloquium Series B3 Auditorium Tue 11.0 Ben Kobler
Exoplanet Club B34 E215 Tue 11.5 Margaret Pan
Gamma-Ray Burst Lunch B34 E256 Tue 12.0 Judy Racusin
Extragalactic Journal Club B34 S391 Tue 14.0 Alaina Henry

2. print out a schedule organized by time

hint: you'll need to do a manual sorting on the last element of each
flight element, before beginning the printing loop

Extra credit: how would you handle meetings on a different day?

Ask not what you can do for your country. Ask
what's for lunch.

(Orson Welles)

